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1. INTRODUCTION

Program slicing was originally introduced in 1984 by Mark Weiser [Weiser 1984]. Since
then, many researchers have extended it in many directions and for all programming
paradigms. The huge number of program slicing-based techniques has lead to the publi-
cation of different surveys [Tip 1995; Binkley and Gallagher 1996; Harman et al. 1996;
Harman and Gallagher 1998; De Lucia 2001; Harman and Hierons 2001; Binkley and
Harman 2004; Xu et al. 2005] trying to clarify the differences between them. How-
ever, each survey presents the techniques from a different perspective. For instance,
some [Tip 1995; Binkley and Gallagher 1996; Harman and Gallagher 1998; De Lucia
2001; Harman and Hierons 2001; Xu et al. 2005] mainly focus on the advances and
applications of program slicing-based techniques; in contrast, Binkley and Harman
[2004] focus on their implementation by comparing empirical results, and Harman
et al. [1996] try to compare and classify them in order to predict future techniques and
applications. In this work, we follow the approach of Harman et al. [1996]. In partic-
ular, we compare and classify the techniques aiming at identifying relations between
them in order to answer questions like “Is one technique a particular case of another?
Is one technique more general or more expressive than another? Are they equivalent
but expressed with different formalisms?”
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There is a well-developed theory and formalization of program slicing which allows
for formally reasoning about the semantic implications of different slicing techniques
(see e.g., [Venkatesh 1991; Giacobazzi and Mastroeni 2003; Binkley et al. 2004, 2006a,
2006b; Danicic et al. 2005; Ward and Zedan 2007]). This formal framework can be
used, for example, to prove properties of a particular technique or of program slicing in
general. For instance, Danicic et al. [2005] used the program schemas theory [Greibach
1985] in order to demonstrate that slices produced by standard algorithms are minimal
for a class of programs. The formalization of the techniques presented and discussed
here is not the objective of this article, but this theoretical background can be a valuable
complement to this work. Therefore, interested readers that want to get deeper in a
particular technique or are interested in its theoretical foundations are referred to
those works.

This article has been structured in two parts: In the first part (Section 2), we de-
scribe all the techniques in a similar way to De Lucia [2001]. We propose a running
example program and extract a slice from it by applying every technique; thus, the
slices produced by each technique for the same program can be compared. In order
to ensure it (because not all slicing criteria are comparable), we will produce at least
one slice generated from a slicing criterion for each technique, which is comparable to
the slicing criterion used in the other techniques. The main objective in this section
is to discuss each technique separately and compare it with the others by temporar-
ily delimiting it and showing its peculiarities and main applications. Here, we do not
focus on how the slices are produced but on what slices are produced. Therefore, we
will not explain the algorithms or the internal mechanisms for producing the slices of
each technique. Rather, we will discuss for each technique what information is needed
to produce a slice, what peculiarities this slice has with respect to other techniques,
and what its main applications are. Of course, we will refer the interested reader to
the sources where the techniques were defined and where deeper details about their
implementation can be found.

This part may be useful for a researcher (not necessarily a program slicing expert)
who is looking for a program slicing technique and she wants to know which of the wide
variety of slicing techniques better fits her needs. To ease the search, we summarize
the goal of each technique with a single question and list its main applications.

In the second part (Section 3), we revisit the classification introduced by Harman
et al. [1996] and extend it with new slicing techniques and dimensions. This analy-
sis provides useful information that allows us to classify the slicing techniques and
establish relations between them. In particular, we relate all the techniques of the first
part by identifying three kinds of relations between them: generalization, superset,
and composition. With these relations, we produce a graph of slicing techniques where
the relations between them establish a hierarchy. With the information provided by
the study, we try to predict new slicing techniques not published yet. Finally, Section 4
concludes.

2. PROGRAM SLICING TECHNIQUES

2.1. Program Slicing [Weiser 1984]

The original ideas of program slicing come from the Ph.D. dissertation of Mark Weiser
[Weiser 1979] that were presented in the Proceedings of the International Conference
on Software Engineering [1981] and finally published in Transactions on Software
Engineering [1984].

Program slicing is a technique for decomposing programs by analyzing their data and
control flow. Roughly speaking, a program slice consists of those program statements
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read(text);(1)read(text);*(1)

read(n);(2)

1;=lines(3)1;=lines(3)

1;=chars(4)

"";=subtext(5)

getChar(text);=c(6)getChar(text);=c(6)

‘\eof’)!=(cwhile(7)‘\eof’)!=(cwhile(7)

‘\n’)==(cif(8)‘\n’)==(cif(8)

1;+lines=linesthen(9)1;+lines=linesthen(9)

1;+chars=chars*(10)

1;+chars=charselse(11)

0)!=(nif(12)

c;++subtext=subtextthen*(13)

1;-n=n(14)

getChar(text);=c(15)getChar(text);=c(15)

write(lines);(16)write(lines);(16)

write(chars);(17)

write(subtext);*(18)

(b) Slice with respect to(a) Example program 〈16↪ lines〉

Fig. 1. Example of a slice.

which are (potentially) related to the values computed at some program point and/or
variable, referred to as a slicing criterion.

As it was originally defined,

A slice is itself an executable program subset of the program whose behavior
must be identical to the specified subset of the original program’s behavior.

However, the constraint of being an executable program has sometimes been
relaxed. Given a program p, slices are produced with respect to a given slicing cri-
terion 〈s, v〉 which specifies a statement s and a set of variables v in p. Note that the
variables in v do not necessarily appear in s; consider, for instance, the slicing criterion
〈18, {lines, chars, subtext}〉 for the program in Figure 1(a). Observe that in this case, not
all the variables appear in line 18.

As an example of a slice, consider the program in Figure 1(a) (for the time being,
the user can ignore the breakpoints marked with *), where function getChar extracts
the first character of a string. This program is an augmented version of the UNIX
word-count program: it takes a text (i.e., a string of characters including ‘\n’—carriage
return—and ‘\eof ’—end-of-file—) and a number n, and it returns the number of charac-
ters and lines of the text and a subtext composed of the first n characters excluding ‘\n’.
We need to augment the functionality of word-count because, in the following, this will
be our running example that we will use with all the techniques in order to compare
their slices produced; and for some techniques, word-count is not enough to show their
differences with respect to other techniques. A slice of this program with respect to the
slicing criterion 〈16, lines〉 is shown in Figure 1(b).

Together with the running example, we will use a running slicing criterion with all
the techniques in order to be able to compare their slices produced with respect to
similar slicing criteria. Nevertheless, the shape of the slicing criterion changes from
one technique to the other. Therefore, we cannot use the same slicing criterion in their
comparison. What we will do is use comparable slicing criteria. Intuitively, two slicing
criteria s1 and s2 are comparable if for all parameter p (such that p ∈ s1 and p ∈ s2),
the value of p is the same in both slicing criteria. In Section 3, we will precisely specify
all the parameters and their values that can be used in current slicing techniques.
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Start (1) (2) (3) (4) (5) (6) (7)

(8)

(16)

(9)

(11)

(10)

(15)
(12)

(13) (14)

(17) (18) Stop

Fig. 2. Control flow graph of Figure 1 (a).

2.2. Static Slicing [Weiser 1984]

The original definition of program slicing was static [Weiser 1984] in the sense that
it did not consider any particular input for the program being sliced. Particularly, the
slice shown in Figure 1(b) is a static slice with respect to the slicing criterion 〈16, lines〉.
It is called static because it does not consider any particular execution (i.e., it works
for any possible input data).

In order to extract a slice from a program, the dependencies between its statements
must be computed first. The control flow graph (CFG) is a data structure which makes
the control dependencies for each operation in a program explicit. For instance, the
CFG of the program in Figure 1(a) is depicted in Figure 2.

However, the CFG does not suffice for computing program slices, because it only
stores control dependencies and data dependencies are also necessary. For this reason,
the CFG must be annotated with data flow information by marking the set of variables
defined and referenced at each node. A detailed explanation of how to annotate CFGs
and how to extract a slice from annotated CFGs can be found in Binkley and Gallagher
[1996]. Ottenstein and Ottenstein [1984] noted that the program dependence graph
(PDG) [Kuck et al. 1981; Ferrante et al. 1987] was the ideal data structure for program
slicing because it allows us to build slices in linear time on the number of nodes
of the PDG.1 PDGs make explicit both the data and control dependencies for each
operation in a program. In essence, a PDG is an oriented graph where the nodes
represent statements in the source code the and edges represent control and data flow
dependencies between statements in such a way that they induce a partial ordering in
the nodes, preserving the semantics of the program. As an example, the PDG of the
program in Figure 1(a) is depicted in Figure 3 where solid arrows represent control
dependencies and dotted arrows represent flow dependences. Here, nodes are labeled
with the number of the statement they represent, except node Start, which represents
the start of the program. The solid arrow between nodes 7 and 8 indicates that the
execution of statement 8 depends on the execution of statement (7). The same happens
with the solid arrow between statements (8) and (12); thus, transitively, the execution
of statement (12) also depends on the execution of statement (7).

Question answered. What program statements can influence these variables at this
statement?

Main applications. Program comprehension, debugging, algorithmic debugging, dead
code removal, program segmentation, program analysis, software quality assurance,
program differencing, software maintenance, testing, program parallelization, module
cohesion analysis, partial evaluation, and program integration.

1Although the cost of computing a slice from a PDG of N nodes is O(N), the cost of building the PDG is
O(N2). See Ferrante et al. [1987] for details.
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Start

(1) (2) (3) (4) (5) (6) (7) (16) (17) (18)

(12)

(14)

(9) (10) (11)

(13)

(8)

(15)

Fig. 3. Program dependence graph of Figure 1(a).

2.3. Dynamic Slicing [Korel and Laski 1988]

One of the main applications of program slicing is debugging. Often, during debugging,
the value of a variable v at some program statement s is observed to be incorrect. A
program slice with respect to 〈s, v〉 contains the cause of the error.

However, in such a case, we are interested in producing a slice formed by those
statements that could cause this particular error, that is, we are only interested in
one specific execution of the program. Such slices are called dynamic slices [Korel
and Laski 1988], since they use dynamic information during the process. In general,
dynamic slices are much smaller than static ones because they contain the statements
of the program that affect the slicing criterion for a particular execution (in contrast to
any execution, as happens with static slicing).

During a program execution, the same statement can be executed several times
in different contexts (i.e., with different values of the variables); as a consequence,
pointing out a statement in the program is not enough in dynamic slicing. A dynamic
slicing criterion needs to specify which particular execution of the statement during
the computation is of interest; thus it is defined as 〈si, v, {a1, . . . , an}〉, where i is the
position of statement s in the execution history2; v is the set of variables we are
interested in, and set {a1, . . . , an} compares the initial values of the program’s input.
As an example, consider the input values {text = “hello world!\eof ”, n = 4} for the
program in Figure 1(a). The execution history would be

(1, 2, 3, 4, 5, 6, 7, (8, 11, 12, 13, 14, 15, 7)12, 16, 17, 18),

where the superscript 12 indicates that the statements inside the parenthesis are
repeated twelve times in the execution history.

A dynamic slice of the program in Figure 1(a) with respect to the slicing criterion
〈1692, {lines}, {text = “hello world!\eof ”, n = 4}〉 is shown in Figure 4. Note that this
slice is much smaller than its static counterpart, because here, the slicer can compute
the specific control and data flow dependencies produced by the provided input data.
However, it comes with a cost: the computation of such dependencies usually implies the

2This notation has been used in two different ways in the literature. We use the original definition as defined
in Korel and Laski [1988] and later used, for instance, in Tip [1995]. However, there is another meaning for
si , which stands for the statement s when it is executed the ith time; as defined in Agrawal and Horgan
[1990] and later user, for instance, in Binkley and Gallagher [1996]”.
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(3) lines = 1;

(16) write(lines);

Fig. 4. Dynamic slice of Figure 1(a) with respect to 〈1692, {lines}, {text = “hello world!\eof ”, n = 4}〉.

computation of an expensive (measured in time and space) and complex data structure
(e.g., a trace [Sparud and Runciman 1997]).

In their definition of dynamic slicing, Korel and Laski [1998] introduced one im-
portant novelty: their slices must follow identical paths as their associated programs.
Roughly, this means that the original program and the slice must produce the same
execution history before they reach the slicing criterion, except for the statements not
influencing the slicing criterion.

Definition 2.1 (Korel and Laski’s Dynamic Slice [1988]). Let c = (si, V, x) be a slic-
ing criterion of a program p and T the trajectory of p on input x. A dynamic slice of
p on c is any executable program p′ that is obtained from p by deleting zero or more
statements, such that when executed on input x, it produces a trajectory T ′ for which
there exists an execution position i′ such that the following hold.

(1) Front(T ′, i′) = DEL(Front(T , i), T ( j) �∈ N′ ∧ 1 ≤ j ≤ q).
(2) For all v ∈ V , the value of v before the execution of instruction T (i) in T equals the

value of v before the execution of instruction T ′(i′) in T ′.
(3) T ′(i′) = T (i) = s,

where N′ is a set of instructions in p′; Front(T , j) returns the first j elements of
sequence T from 1 to j inclusive; and DEL(T , π ) is a filtering function which takes a
predicate π and returns the trajectory obtained by deleting from T the elements that
satisfy π .

This property constitutes a new way to compute slices that can be combined with
many other forms of slicing (e.g., Binkley et al. [2006a]) and that determines whether
or not dynamic slicing is subsumed by other forms of slicing. Therefore, the path-aware
condition should be fixed in order to compare two slicing techniques (whatever they
are). In the rest of the article—unless the contrary is stated—we will always consider
that slicing techniques are path-unaware. Therefore, subsequent references to dynamic
slicing will really refer to path-unaware dynamic slicing (thus, a different algorithm
than the one defined by Korel and Laski [1988], see Agrawal and Horgan [1990]). We
refer the reader to Section 3 for a description of slicing dimensions and their use for
comparing slicing techniques.

Question answered. For this particular execution, what program statements can
influence these variables at this statement?

Main applications. Debugging, testing, and tuning compilers.

2.4. Backward Slicing [Weiser 1984]

A program can be traversed forwards or backwards from the slicing criterion. When
we traverse it backwards (backward slicing), we are interested in all those statements
that could influence the slicing criterion. In contrast, when we traverse it forwards
(forward slicing), we are interested in all those statements that could be influenced by
the slicing criterion.

The previously described original method by Weiser was static backward slicing.
The main applications of backward slicing are debugging, program differencing, and
testing. As an example, the slice shown in Figure 1(b) is a backward slice of the program
in Figure 1(a).
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(3) lines = 1;

(9) lines = lines + 1;

(16) write(lines);

Fig. 5. Forward static slice of Figure 1(a) with respect to 〈3, {lines}〉.

(3) lines = 1;

(9) lines = lines + 1;

Fig. 6. Chop of Figure 1(a) with respect to 〈source = {(3, {lines})}, sink = {(9, {lines})}〉.

Question answered. What program statements can influence these variables at this
statement?

Main applications. Program comprehension, debugging, algorithmic debugging, dead
code removal, program segmentation, program analysis, program differencing, soft-
ware maintenance, testing, program parallelization, module cohesion analysis and
program integration.

2.5. Forward Slicing [Bergeretti and Carré 1985]

Forward slicing [Bergeretti and Carré 1985] allows us to determine how a modification
in a part of the program will affect other parts of the program. As a consequence, it has
been used for dead code removal and for software maintenance. In this context, Reps
and Bricker were the first to use the notion of forward slicing [1989]. However, despite
backward slicing being the preferred method for debugging, forward slicing has also
been used for this purpose. In particular, forward slicing can detect initialization errors
[Gaucher 2003].

A forward static slice of our running example with respect to the previously used
slicing criterion 〈16, {lines}〉 would only contain statement (16) because lines is not
used after line (16).

A more clarifying example is the forward static slice of the program in Figure 1(a)
with respect to the slicing criterion 〈3, {lines}〉, as shown in Figure 5.

Question answered. What program statements can be influenced by these variables
at this statement?

Main applications. Program differencing, debugging, program comprehension,
program analysis, dead code removal, software maintenance, and testing.

2.6. Chopping [Jackson and Rollins 1994]

In chopping [Jackson and Rollins 1994], the slicing criterion selects two sets of vari-
ables, source and sink, and then it computes all the statements in the program that
being affected by source, affect sink. Therefore, chopping is a generalization of both
forward and backward slicing where either source or sink is empty. As noted by Reps
and Rosay [1995], chopping is particularly useful for detecting those statements that
transmit effects from one part of the program (source) to another (sink).

For instance, a chop of the program in Figure 1(a) with respect to the slicing
criterion 〈source = {(3, {lines})}, sink = {(16, {lines})}〉 is shown in Figure 5. Sim-
ilarly, a chop of the program in Figure 1(a) with respect to the slicing criterion
〈source = {(3, {lines})}, sink = {(9, {lines})}〉 is shown in Figure 6.

Question answered. What program statements can influence these variables at this
statement while they are influenced by these (other) variables at this other statement?

Main applications. Program analysis and debugging.
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(3) lines = 1;

(6) c = getChar(text);

(8) if (c == ‘\n’)

(16) write(lines);

Fig. 7. Relevant slice of Figure 1(a) with respect to 〈1692, {lines}, {text = “hello world!\eof ”, n = 4}〉.

2.7. Relevant Slicing [Agrawal et al. 1993]

A dynamic program slice only contains the program statements that actually affect
the slicing criterion. However, it is sometimes interesting to include in the slice those
statements that could have affected the slicing criterion (e.g., in debugging). This is the
objective of relevant slicing [Agrawal et al. 1993], which computes all the statements
that could potentially affect the slicing criterion.

A slicing criterion for relevant slicing is exactly the same as for dynamic slicing, but
if we compute a relevant slice and a dynamic slice with respect to the same slicing
criterion, the relevant slice is a superset of the dynamic slice, because it contains all
the statements of the dynamic slice and also contains those statements of the program
that did not affect the slicing criterion but could have affected it if they would have
changed (for instance, because they were faulty).

Let us explain it with an example: consider the previously used slicing criterion
〈1692, {lines}, {text = “hello world!\eof ”, n = 4}〉. The relevant slice computed is shown
in Figure 7. It contains all the statements of the dynamic slice (see Figure 4) and also
includes statements (6) and (8). Statement (6) could have influenced the value of
lines being redefined to “(6) c = ‘\n’;” and statement (8) could have influenced the
value of lines being redefined to “(8) if (c != ‘\n’)”.

It should be clear that the slices produced in relevant slicing can be non-executable.
The reason being that the main application of such a technique is debugging, where
the programmer is interested in those parts of the program that can contain the bug.
The statements included in the slice are those whose contamination could result in
the contamination of the variable of interest. In order to make the slice executable,
preserving the behavior (including termination) of the original program it is necessary
to augment the slice with those statements that are required for the evaluation of all
the expressions included in the slice (even if this evaluation does not influence the
variable of interest).

The forward version of relevant slicing [Gyimóthy et al. 1999] can be useful in debug-
ging and in program maintenance. A forward relevant slice contains those statements
that could be affected by the slicing criterion (if it is redefined). Therefore, it could be
used to study module cohesion by determining what could be the impact of a module
modification over the rest of modules.

Question answered. What program statements could influence these variables at this
statement if they were redefined?

Main applications. Debugging and program maintenance.

2.8. Hybrid Slicing [Gupta and Soffa 1995]

When debugging, it is usually interesting to work with dynamic slices because they
focus on a particular execution (i.e., the one that showed a bug) of the program being
debugged; therefore, they are much more precise than static ones. However, computing
dynamic slices is very expensive in time and space due to the large data structures
(up to gigabytes) that need to be computed. In order to increase the precision of static
slicing without incurring the computation of these large structures needed for dynamic
slicing, a new technique called hybrid slicing [Gupta and Soffa 1995] was proposed. A
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(1) read(text);

(4) chars = 1;

(6) c = getChar(text);

(7) while (c != ’\eof’)

(8) if (c == ’\n’)

(11) then chars = chars + 1;

(15) c = getChar(text);

(17) write(chars);

Fig. 8. Hybrid slice of Figure 1(a) with respect to 〈17, {chars}, {1, 13, 13, 13, 18}〉.

hybrid slice is more accurate—and consequently smaller—than a static one and less
costly than a dynamic slice.

The key idea of hybrid slicing consists of integrating dynamic information into the
static analysis. In particular, the information provided to the slicer is a set of break-
points inserted into the source code that can be activated when the program is executed,
thus providing information about which parts of the code have been executed. This in-
formation allows the slicer to eliminate from the slice all the statements which are in
a non-executed possible path of the computation.

For instance, consider the program in Figure 1(a) which contains four breakpoints
marked with ‘*’. A particular execution will activate some of the breakpoints; this
information can be used by the slicer. For instance, a possible execution could be
{1, 13, 13, 13, 10, 13, 18}, which means that the loop has been entered five times, and
both branches of the outer if-then-else have been executed.

A hybrid slicing criterion is a triple 〈s, v, {b1, . . . , bn}〉, where s and v have the same
meaning as in static slicing, and the set {b1, . . . , bn} is the sequence of breakpoints
activated during a particular execution of the program.

Figure 4 shows the hybrid slice of our running example with respect to the slicing
criterion 〈16, {lines}, {1, 13, 13, 13, 18}〉. Figure 8 shows the hybrid slice with respect to
the slicing criterion 〈17, {chars}, {1, 13, 13, 13, 18}〉.

Question answered. For the set of executions defined by this set of breakpoints, what
program statements can influence these variables at this statement?

Main applications. Debugging.

2.9. Intraprocedural Slicing (Weiser, 1984)

The original definition of program slicing has been later classified as intraprocedural
slicing (i.e., the slice in Figure 1(b) is an intraprocedural slice), because the original
algorithm did not take into account information related to the fact that slices can cross
the boundaries of procedure calls. In such cases, it generates wrong criteria which are
not feasible in the control flow of the program.

This does not mean that the original definition fails to slice multiprocedural pro-
grams; it means that it loses precision in such cases.

As an example, consider the program in Figure 9. A static backward slice of this
program with respect to the slicing criterion 〈16, {x}〉 includes all the statements of the
program except statements (11), (12), and (13). However, it is clear that statements (3)
and (8) included in the slice cannot affect the slicing criterion. They are included in
the slice because procedure sum influences the slicing criterion, and statements (3) and
(8) can influence procedure sum. However, they cannot transitively affect the slicing
criterion. In particular, the problem of Weiser’s algorithm is that the call sum(x,1)
causes the slice to go down into procedure sum, and then it goes up to all the calls
to sum, including the irrelevant call sum(lines,1). This problem is due to the fact
that Weiser’s algorithm does not keep information about the calling context when it
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(1) program main

(2) read(text);

(3) lines = 1;

(4) chars = 1;

(5) c = getChar(text);

(6) while (c != ‘\eof’)

(7) if (c == ‘\n’)

(8) then sum(lines,1);

(9) else increment(chars);

(10) c = getChar(text);

(11) write(lines);

(12) write(chars);

(13) end

(14) procedure increment(x)

(15) sum(x,1);

(16) return

(17) procedure sum(a, b)

(18) a = a + b;

(19) return

Fig. 9. Example of a multi-procedural program.

traverses procedures up and down. A detailed explanation of this problem can be found
in Gallagher [2004].

This loss of precision has been later solved by another technique called interproce-
dural slicing (see Section 2.10).

Question answered. What program statements can influence these variables at this
statement?

Main applications. Program comprehension, debugging, algorithmic debugging, dead
code removal, program segmentation, program analysis, software quality assurance,
program differencing, software maintenance, testing, program parallelization, module
cohesion analysis, partial evaluation, and program integration.

2.10. Interprocedural Slicing [Horwitz et al. 1988]

In 1988, Horwitz et al. noted that the program dependence graph was not appropri-
ate for representing multiprocedural programs, and they proposed a new dependence
graph representation of programs called system dependence graph (SDG) [1988]. This
new representation incorporates collections of procedures with procedure calls, and it
allows us to produce more precise slices from multiprocedural programs, because it has
information available about the actual procedures’ calling context.

For instance, consider Program 1 in Figure 24 together with the slicing criterion
〈3, {chars}〉. An intraprocedural static slice contains exactly the same statements
(Program 1). However, it is clear that procedure increment cannot affect the slicing
criterion (in fact, it is dead code). Roughly speaking, this inaccuracy is due to the fact
that the call to procedure sum makes the slice include this procedure. Then, all the calls
to this procedure can influence it, and thus, procedure increment is also included.

In contrast, an interprocedural static slice (Program 2) uses information stored in
the system dependence graph about the calling context of procedures. Hence, it would
remove procedure increment, thus increasing the precision with respect to the intrapro-
cedural algorithms.
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(2) (3) (4) (5) (6) (11) (12)

(7) (10)

(18)

control

Fig. 10. System dependence graph of the program in Figure 9.

In order to understand what additional information the SDG provides about the
calling context of procedures, we can observe the SDG of Figure 9 shown in Figure 10.

The SDG of Figure 10 contains all the information needed to produce precise inter-
procedural slices. As the PDG, it contains the control and flow relations of the program,
but it also contains other relations: interprocedural flow relations are represented by
bold arrows, and call, parameter in, and parameter out relations are represented by
dotted arrows. Moreover, new nodes are included to represent the values of the pa-
rameters of all procedures when entering the procedure ( in parameters: information
going down) and when leaving the procedure ( out parameters: information going up).
Together with the definition of the SDG, Horwitz et al. [1988] introduced an algorithm
to produce precise interprocedural slices.

Later, Gallagher [2004] proposed an alternative solution to solve the imprecision of
Weiser’s algorithm with interprocedural programs. He showed that it is possible to
produce precise interprocedural slices by using the PDG together with a call graph.
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(1) program main

(2) read(text);

(4) chars = 1;

(5) c = getChar(text);

(6) while (c != ‘\eof’)

(7) if (c == ‘\n’)

(9) else increment(chars);

(10) c = getChar(text);

(14) procedure increment(x)

(15) sum(x,1);

(16) return

(17) procedure sum(a, b)

(18) a = a + b;

(19) return

Fig. 11. Interprocedural slice of Figure 9 with respect to 〈16, {x}〉.

(...)

(1) Person *p;

(2) if (x>0)

(3) then p = new Person();

(4) else p = new Worker();

(...)

Fig. 12. Object-oriented code.

Figure 11 shows the interprocedural slice of the program in Figure 9, with respect
to the slicing criterion 〈16, {x}〉.

2.10.1. Object-Oriented Slicing [Larsen and Harrold 1996]. Object-oriented programs intro-
duce additional features, such as classes, objects, inheritance, polymorphism, instan-
tiation, etc, which cannot be handled with standard SDGs. Therefore, in order to slice
object-oriented programs, the SDG must be extended. Larsen and Harrold [1996] pro-
posed an extension of the SDG for object-oriented programs which can still use the
standard SDG algorithm. In the SDGs proposed by Larsen and Harrold, each single
class is represented by a class dependence graph (ClDG) which represents control and
data dependencies in a class without knowledge of calling environments. ClDGs can be
reused in the presence of inheritance. That is, derived classes are built by constructing
a representation of new methods and reusing the representation of inherited methods.

ClDGs take into account instantiation and polymorphism. When class C1 instanti-
ates class C2 (e.g., through a declaration or by using the operator new), there is an
implicit call to C2’s constructor, which must be represented in the ClDG. Similarly,
polymorphic method calls introduce an additional complexity which must be solved in
the ClDGs. For instance, consider the piece of code in Figure 12 where class Worker
extends class Person.

Under the assumption that x is a parameter of the program, it is not possible to
know at compilation time whether p will instantiate Worker or Person. Static analysis
must consider both possibilities. To solve this situation, the ClDG uses a special vertex
called polymorphic choice vertex to represent the dynamic choice among the possible
destinations of the method calls.

Another particularity of object-oriented programs is that variable references are
often replaced with method calls that simply return the value of the variable. Therefore,
in order to allow the user to slice on the values returned by a method, the slicing
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(1) read(text);

(5) subtext = "";

(18) write(subtext);

Fig. 13. Quasi-static slice of Figure 1(a) with respect to 〈18, {subtext}, {n = 0}〉.

criterion is slightly generalized. A static slicing criterion for an object-oriented program
is a pair 〈s, m〉, which specifies a statement s and a variable or a method call m. If m is
a variable, it must be defined or used at s; if m is a method call, it must be called at s.

2.10.2. Aspect-Oriented Slicing [Zhao 2002]. Aspect-oriented programs incorporate new
concepts and associated constructs, namely join points, pointcut, advice, introduction,
and aspect. To cope with them, Zhao [2002] proposed a new extension of the SDG called
aspect-oriented system dependence graph (ASDG).

The ASDG is constructed by constructing the SDG of the non-aspect code of the
program, constructing dependence graphs for the aspect code of the program, and
connecting the graphs by adding special vertices and arcs. The result is the ASDG
which can be used in combination with the standard SDG algorithm.

Question answered. What program statements can influence these variables at this
statement?

Main applications. Program comprehension, debugging, algorithmic debugging, dead
code removal, program segmentation, program analysis, software quality assurance,
program differencing, software maintenance, testing, program parallelization, module
cohesion analysis, partial evaluation, and program integration.

2.11. Quasi-Static Slicing [Venkatesh 1991]

While static slicing computes slices with respect to any execution, dynamic slicing
computes slices with respect to a particular execution. However, it is sometimes inter-
esting to produce a slice with respect to a particular set of executions (e.g., in program
understanding). Quasi-static slicing [Venkatesh 1991] can be used in those applications
in which a set of the program inputs are fixed, and the rest of the inputs is unknown.
This leads to a potentially infinite set of considered executions.

A quasi-static slicing criterion is a tuple 〈s, v, {a1, . . . , am}〉 where s and v have the
same meaning as in static slicing, and the set {a1, . . . , am} is a mapping from (some
of the) input variables to values. For instance, a quasi-static slicing criterion for the
program in Figure 1(a) could be 〈18, {subtext}, {n = 0}〉. The slice computed with respect
to this criterion is shown in Figure 13.

In our running example, the slice produced with respect to the slicing criterion
〈16, {lines}, {text = “hello world!\eof ”}〉 would produce the slice shown in Figure 4.

Question answered. For the set of executions in which these inputs have these values,
what program statements can influence these variables at this statement?

Main applications. Debugging and program comprehension.

2.12. Call-Mark Slicing [Nishimatsu et al. 1999]

Given a dynamic slicing criterion D which is comparable to a static slicing criterion S,
the minimal slice produced for D is smaller or equal to the minimal slice produced for
S. However, when slicing real programs, the minimal slice produced for D is generally
much smaller than the minimal slice produced for S [Binkley et al. 2006a; Takada et al.
2002].

Nevertheless, this reduction of the size comes with a cost: computing dynamic
slices with standard algorithms is much more expensive than computing their static
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(3) lines = 1;

(11) write(lines);

Fig. 14. Call-mark slice of Figure 9 with respect to 〈13, {lines}〉.

counterparts. The reason being that computing an execution trace is necessary to ex-
tract the dependences between actually executed statements.

Nishimatsu et al. [1999] proposed a new slicing technique named call-mark slicing
which allows us to reduce the cost of constructing dynamic slices though reducing
their precision. The objective is to establish a compromise between static slicing and
dynamic slicing in the following sense: call-mark slices are generally smaller than
static slices, but they are less expensive to build than dynamic slices. To do so, this
technique uses dynamic information when constructing the PDG. A call-mark slicing
criterion is exactly the same as a static slicing criterion but augmented with a complete
input. Hence, 〈s, v, {a1, . . . , an}〉, where s is a statement, v is the set of variables we are
interested in, and the set {a1, . . . , an} is the initial values of the program’s input. The
main difference between this technique and dynamic slicing is the way of using the
dynamic information. Call-mark slicing uses the dynamic information to determine
whether or not each execution/procedure call statement in the program is executed.
These call statements are marked. Then, this information is used to prune the PDG by
removing those statements not marked as executed. The result is a more precise PDG
which can be traversed with standard static techniques.

As an example, if we consider the program in Figure 9 and the slicing criterion
〈13, {lines}, {text = “hello world!\eof ”, n = 4}〉, we get the call nodes of the PDG (9)
and (15) as marked. Because node (8) is not marked, this statement is removed from
the slice (despite it statically affecting variable lines at statement (13)). The call-mark
slice produced is shown in Figure 14. Note that in this case, we where so lucky that
the call-mark slice is as accurate as the corresponding dynamic slice; but, with real
programs, this is not usually the case.

Question answered. For this particular execution, what program statements can
influence these variables at this statement?

Main applications. Debugging, program comprehension, and testing.

2.13. Dependence-Cache Slicing [Takada et al. 2002]

After the first attempt with call-mark slicing to define a slicing technique which uses
dynamic information to prune the PDG, Takada et al. [2002] proposed a new slicing
technique named dependence-cache slicing which also allows us to prune the PDG with
dynamic information. Similarly to call-mark slicing, dependence-cache slicing uses the
dynamic information to build a more precise PDG. In this new PDG (called PDGDS
[Takada et al. 2002]), the data-dependence relations are those which are possible with
the input data provided. Therefore, many infeasible paths are removed from the PDG.
While their objective is the same, call-mark slicing and dependence-cache slicing are
very different in the way they prune the PDG. On the one hand, call-mark slicing
deletes nodes from the PDG. On the other hand, dependence-cache slicing deletes
edges. In particular, dependence-cache slicing constructs the PDGDS in two steps:
(i) a standard PDG is constructed without adding data dependence edges; and then,
(ii) a data-dependencies collection algorithm is used to add data edges to the PDGDS,
which are feasible in the considered execution.

For instance, the PDGDS of our running example constructed from the input data
{text = “hello world!\eof ”, n = 4} would be exactly the same as the PDG in Figure 3
but removing the data dependence edges (3)→(9), (4)→(10), (9)→(16), (10)→(11), and
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Fig. 15. PDGDS of the program in Figure 1 (a) constructed with respect to the input data {text = “\eof ”,
n = 0}.

(10)→(17), because statements (9) and (10) are never executed. Therefore, if we use the
slicing criterion 〈16, {lines}, {text = “hello world!\eof ”, n = 4}〉, we get the dependence-
cache slice of Figure 4. Note that, in this case, deleting those edges from the PDG is
enough to get the same precision as a dynamic slicer.

Let us now consider, for the same program an extreme example where the input data
is the empty text, that is, {text = “\eof ”, n = 0}. The PDGDS for this example is shown
in Figure 15. An algorithm to compute such a PDG can be found in Takada et al. [2002].

An experimental comparison by Takada et al. [2002] has shown that dependence-
cache slices are, on average, smaller than the corresponding call-mark slices. The same
experiments also show that dependence-cache slices are less expensive to be computed.

Question answered. For this particular execution, what program statements can
influence these variables at this statement?

Main applications. Debugging, program comprehension, and testing.

2.14. Simultaneous Slicing [Hall 1995]

There are two different views of simultaneous slicing. On the one hand, the first defini-
tion is simultaneous dynamic slicing—this technique has been also called union slicing
[Beszédes et al. 2002] in the literature—where a slice is computed with respect to a set
of inputs for the program, and thus, the slice can be computed from the dynamic slices
computed for each input. However, the construction of such a slice does not simply
reduce to the union of slices (this is not sound) and it requires the use of more elabo-
rate methods, such as the simultaneous dynamic slice (SDS) procedure [Hall 1995]. On
the other hand, Danicic and Harman [1996] define simultaneous slicing as a general-
ization of program slicing in which a set of slicing criteria is considered.3 Hence, slices
are computed with respect to a set of different points, rather than a set of inputs.

2.14.1. Simultaneous Dynamic Slicing [Hall 1995]. Similarly to quasi-static slicing, simul-
taneous dynamic slicing computes a slice with respect to a particular set of executions;
however, while quasi-static slicing fixes a set of the program inputs (leaving the rest
unknown), in simultaneous dynamic slicing [Hall 1995], a set of complete inputs is

3Weiser probably already noticed that his algorithm could work with multiple points. However, until 1996,
this idea was not exploited.
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known. Thus, a simultaneous dynamic slicing criterion can be seen as a set of dynamic
slicing criteria.

A simultaneous dynamic slicing criterion has the form 〈si, v, {I1, . . . , In}〉, where i
is the number of occurrences of statement s in the execution history, v is the set of
variables of interest, and {I1, . . . , In} is a set of complete inputs for the program. For
instance, a slice of Figure 1(a) with respect to the slicing criterion 〈1692, {lines}, {I1, I2}〉,
where I1 = (text = “hello world!\eof ”, n = 4) and I2 = (text = “hello\nworld!\n \eof ”,
n = 0) is depicted in Figure 1(b).

Note that, in contrast to quasi-static slicing where the set of considered executions
can be infinite, in simultaneous dynamic slicing it is always finite.

Question answered. For these particular executions, what program statements can
influence these variables at this statement?

Main applications. Program reuse, program redesign, and program maintenance.

2.14.2. Simultaneous (Static) Slicing [Danicic and Harman 1996]. Although Weiser’s algo-
rithm is able to produce slices starting at many slicing criteria points, the first to talk
about simultaneous slicing from a static point of view were Danicic and Harman.

In Danicic and Harman’s definition of simultaneous slicing, a slicing criterion is
〈{(s1, v1), . . . , (sn, vn)}〉, where (si, vi), 1 ≤ i ≤ n are static slicing criteria. Therefore,
clearly simultaneous slicing is a generalization of static slicing, where a set of points
can be considered instead of only one. Following our running example, a simultaneous
slice with respect to the slicing criterion 〈{(9, lines), (16, lines)}〉 is shown in Figure 1(b).

This slice has been computed by the union of the static slices for 〈9, lines〉 and
〈16, lines〉. However, although the union of static slices produces a correct slice in
practice, De Lucia et al. [2003] showed that in theory—if we rigidly fit to the definition
of slice—“unions of slices are not slices.” A sample of this theoretic phenomenon can be
found in Figures 1 and 2 of De Lucia et al. [2003].

It should be clear that although the work by Danicic and Harman focused on static
slicing, their definition of simultaneous slicing can be easily adapted to other forms of
slicing (see Section 3).

Lakhotia [1993] introduced a new kind of slicing criterion in order to compute module
cohesion. The aim of his work was to collect the module’s components which contribute
to the final value of the output variables of this module. Therefore, in this scheme,
the slicing criterion is formed by a set of variables. It is called end slicing because the
slicing point is the end of the program. Then, an end slicing criterion is formed by a set
of variables of the program, and thus it can be represented as a set of slicing criteria
(i.e., it is a particular case of simultaneous static slicing).

Question answered. What program statements can influence these variables at these
statements?

Main applications. Program comprehension, debugging and module cohesion
analysis.

2.15. Interface Slicing [Beck and Eichmann 1993]

Interface slicing [Beck 1993; Beck and Eichmann 1993] is a slicing technique which is
applied to a module in order to extract a subset of the module’s functionality. A module
can contain many functions and procedures (in the following, components) that can
be used by the system which imports this module. The collection of component names
form the interface of the module.

When a programmer imports the module, usually only a part of it is used. The rest of
the unused components become dead code. Therefore, the basic idea of interface slicing
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increment(x)procedure(15)operationsmodule(1)

sum(x,1);(16)

return(17)line-char-count()procedure(2)

read(text);(3)

b)sum(a,procedure(18)1;=lines(4)

b;+a=a(19)1;=chars(5)

return(20)getChar(text);=c(6)

‘\eof’)!=(cwhile(7)

decrement(x)procedure(21)‘\n’)==(cif(8)

rem(x,1);(22)sum(lines,1);then(9)

return(23)increment(chars);else(10)

getChar(text);=c(11)

b)rem(a,procedure(24)write(lines);(12)

b;-a=a(25)write(chars);(13)

return(26)return(14)

Fig. 16. Module which exports five procedures.

is to allow the programmer to produce a new module which only contains the desired
components. To do this, the programmer only has to specify which part of the interface
(i.e., which module components) are at interest. Then, an interface slicer produces a
new module from the original module which only contains the desired components.

An interface slicing criterion has the form 〈 f 〉, where f is a set of function or proce-
dure names of the module’s interface. For instance, consider the module of Figure 16
(whose interface is [line−char−count, increment, sum, decrement and rem]) and the slic-
ing criterion 〈{rem, line − char − count}〉. The slice produced (the new module) would be
formed by line (1) and procedures rem, line−char−count, increment, and sum. increment
and sum are included in the slice because they are referenced by line − char − count.

Hence, a component of the module can belong to the slice because it is part of the
desired interface, or because it is used (maybe transitively) by a desired part of the
interface. Therefore, the process of interface slicing is essentially the same as conven-
tional slicing, but the interesting dependences are defined between components and
global variables rather than between statements. Hence, it is the same problem but
with a bigger granularity level.

It is important to note that each component of the slicing criterion specifies a point in
the module. In principle, interface slicing could be thought as a particular instance of
simultaneous static slicing where multiple points are implicitly specified in the slicing
criterion. In particular, each component name f could be converted to a static slicing
criterion 〈s, v〉, where s is the last statement of procedure f , and v contains all the
variables appearing in f . However, the precision of both methods is different.

While a static slice taken from 〈s, v〉 would remove dead code appearing in f , an
interface slice produced from 〈 f 〉 would keep the dead code in f , because the interface
slice extracts all the statements in relevant components. Hence, an interface slice is a
superset of a simultaneous static slice taken from equivalent slicing criteria.

Question answered. What parts of this module are I needed to reuse these procedures?

Main applications. Reverse engineering and code reuse.

2.16. Program Dicing [Lyle and Weiser 1987]

The process of program dicing [Lyle and Weiser 1987] was originally designed to
“remove those statements of a static slice of a variable that appears to be correctly
computed from the static slice of an incorrectly valued variable.” From this definition,
it is easy to deduce that program dicing was originally defined for debugging. In essence,
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(3) lines = 1;

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(9) then lines = lines + 1;

(16) write(lines);

Fig. 17. Stop-list slice of the program in Figure 1 with respect to the criterion 〈16, {lines}, {c}〉.

a dice is the set difference between at least two slices—typically, one of an incorrect
value and the other of a correct value. The main idea is that after some tests, we can
find some correct and incorrect outputs. The statements in a slice of an incorrect output
that do not belong to the slice of a correct output are more likely to be wrong. As a
consequence, a program dicing criterion specifies n points in the program, for example,
one for the correct computation and n − 1 for the wrong computations. For instance,
a backward static program dicing criterion for the program in Figure 1(a) could be
〈(16, {lines}), {(17, {chars})}〉; its meaning is that variable lines at line (16) produced an
incorrect value (its slice contains the statements 1, 3, 6, 7, 8, 9, 15, and 16), whereas
variable chars at line 17 produced a correct value (its slice contains the statements 1,
4, 6, 7, 8, 10, 11, 15, and 17). Note that only one point has been specified for the correct
computation, but a set is possible. The dice computed with respect to this criterion is
shown in Figure 5.

In contrast to program slicing where a dynamic slice is included in its corresponding
static slice, a dynamic dice is not necessarily included in its corresponding static dice.
Chen and Cheung [1993] investigated under what conditions a dynamic dice is more
precise than a static dice.

Question answered. What program statements can influence these variables at this
statement but do not influence these other variables?

Main applications. Debugging.

2.17. Stop-List Slicing [Gallagher et al. 2006]

Stop-list slicing [Gallagher et al. 2006] is a slicing technique similar to dicing, because
both of them use variables of no interest to the programmer to reduce the size of
the slice. Usually, programs contain two kinds of variables: those which perform com-
putations (e.g., output variables) and those which help to perform computations (e.g.,
auxiliary variables such as temporaries, counters, and indices). Clearly, the importance
of these variables is different depending on the purpose of the programmer. Hence, the
objective of stop-list slicing is to allow the programmer to remove those variables from
the slice which are of no interest.

Stop-list slicing augments the slicing criterion with a new list of variables: the set
of variables considered uninteresting. Therefore, a stop-list slicing criterion has the
form 〈s, v, vsl〉, where s and v have the same meaning as in static slicing, and vsl is the
stop-list variable set—the variables of no interest. The stop-list variable set is used to
purge the dependence graph by removing all the simple assignments to the variables
in the stop-list set and all the data dependencies starting from them. Note that control
dependencies are not removed.

After the dependence graph is purged, the slice is computed as usual with the stan-
dard graph reachability algorithm. Clearly, since some parts of the dependence graph
are missing, the slice produced is smaller.

As an example, a stop-list slicing criterion for our running example could be
〈16, {lines}, {c}〉, which denotes that the computation of variable c is uninteresting.
The slice produced for this criterion is shown in Figure 17.
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Question answered. What program statements can influence these variables at this
statement (but I am not interested in the statements needed for the computation of the
value of this set of other variables)?

Main applications. Program comprehension and debugging.

2.18. Barrier Slicing [Krinke 2003]

Barrier slicing was introduced by Jens Krinke [2003, 2004] as a novel form of slicing in
which the programmer has more control over the construction of the slice. In particular,
in this technique, the programmer can specify which parts of the program can be
traversed when constructing the slice and which parts cannot. This can be useful in
debugging. For instance, programmers often reuse code which is known to be correct.
When debugging, the programmer might want to exclude this code from the slice
(because it cannot contain the bug which is being looking for).

This ability can be used by including barriers in the slicing criterion. A barrier is
specified with a set of nodes (or edges) of the PDG that cannot be passed during the
graph traversal. Therefore, a barrier slice can be computed by stopping the computation
of the transitive closure of the program dependencies whenever a barrier is reached. A
usual barrier-slicing criterion is a tuple 〈s, v, b〉, where s and v have the same meaning
as in static slicing, and b is a collection of statement numbers denoting the barriers. For
instance, in our running example, we could use the slicing criterion 〈(16, {lines}), {8}〉,
which can be interpreted as from those executions that do not execute the if-then-else,
what statements do influence variable lines at line 16? The slice produced for this
criterion is depicted in Figure 4.

Question answered. What program statements can influence these variables at this
statement from this set of other statements?

Main applications. Program comprehension, remote software trusting, and
debugging.

2.19. Conditioned Slicing [Ning et al. 1994]

Although Ning et al. [1994] were the first to work with conditioned slices; this technique
was formally defined for the first time by Canfora et al. [1994].

Similarly to simultaneous dynamic slicing and quasi-static slicing, conditioned slic-
ing [Canfora et al. 1994, 1998] computes slices with respect to a set of initial states
of the program. The original definition proposed the use of a condition (from the pro-
gramming language notation) to specify the set of initial states. Posteriorly, Field et al.
[1995] proposed the same idea (known as parametric program slicing or constraint
slicing) based on constraints over the initial values. Finally, De Lucia et al. [1996]
proposed the condition to be a universally quantified formula of first-order predicate
logic. In this approach, which is a generalization of the previous works, a conditioned
slicing criterion is a quadruple 〈i, F, s, v〉, where i is a subset of the input variables of
the program, F is a logic formula on i, s is a statement of the program, and v is a subset
of the variables in the program.

The logic formula F identifies a set of the possible inputs of the program, which
could be infinite. For instance, consider the conditioned slicing criterion 〈(text, n), F,
18, {subtext}〉, where F = (∀c ∈ text, c �= ‘\n’ . n > 0); the conditioned slice of the
program in Figure 1(a) with respect to this criterion is shown in Figure 18.

It should be clear that conditioned slicing is a generalization of both simultaneous
dynamic slicing and quasi-static slicing because their respective slicing criteria are a
particular case of a conditioned slicing criterion. As an advantage, conditioned slicing
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(1) read(text);

(2) read(n);

(5) subtext = "";

(6) c = getChar(text);

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(12) if (n != 0)

(13) then subtext = subtext ++ c;

(14) n = n - 1;

(15) c = getChar(text);

(18) write(subtext);

Fig. 18. Conditioned slice of Figure 1(a) with respect to 〈(text, n), F, 18, {subtext}〉, where F = (∀c ∈ text, c �=
‘\n’ . n > 0).

allows us to specify relations between input values. For instance, condition F specifies
that if text is a single line, then n must be higher than 0.

It is important to note that the claim “conditioned slicing generalizes dynamic slicing”
is imprecise. To be more precise, the correct sentence should be “path-aware conditioned
slicing generalizes path-aware dynamic slicing” or “path-unaware conditioned slicing
generalizes path-unaware dynamic slicing.” But the sentence “path-unaware condi-
tioned slicing generalizes path-aware dynamic slicing” is not true (see Section 2.3).
Therefore, in the following, whenever we say that technique A is a generalization of
technique B, we will implicitly assume that both techniques use equal non-mentioned
conditions (i.e., both are static or dynamic, both are forward or backward, both are
path-aware or path-unaware, etc.). Section 3 studies these conditions and its possible
values to make two slicing techniques comparable.

For instance, following our running example, the conditioned slicing criterion
〈(text), F, 16, {lines}〉 where F = (∀c ∈ text, c �= ‘\n) generalizes the dynamic slicing
criterion of Figure 4. Here, the inputs considered are all those texts with a single
line—an infinite set—and thus, the corresponding slice is shown in Figure 4.

Question answered. For the initial states which satisfy this condition, what state-
ments can influence these variables at this statement?

Main applications. Debugging, software reuse, ripple effect analysis, legacy code
understanding, and program comprehension.

2.20. Backward Conditioning Slicing [Fox et al. 2001]

The definition of conditioned slicing defined by De Lucia et al. [1996] has been later
referred to as forward conditioning slicing, because the specified condition affects the
initial state—the input, and this condition is used forward to determine which state-
ments are executed when the condition is true. Therefore, forward conditioning is able
to answer questions of the form “what happens when the initial state is s?”

Fox et al. [2001] noted that the condition could be placed at any point on the program.
This approach is called backward conditioning slicing, because the specified condition
is used backwards in the program to determine which statements are needed to make
the condition true. Therefore, backward conditioning is able to answer questions of the
form “how could the program get into state s?” As happens with conventional forward
slicing, backward conditioning slicing requires symbolic execution and theorem-proving
mechanisms.

Together with the definition of backward conditioning slicing, Fox et al. introduced
their generalization to consider a set of conditions instead of one. As a result, the
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(3) lines = 1;

(16) write(lines);

Fig. 19. Backward conditioning slice of Figure 1(a) with respect to 〈{({lines}, 16), (lines = 1, 16)}〉.

backward conditioning slicing criterion is defined as a set of pairs where each pair is
either (1) a set of variables and a program point (a traditional static slicing criterion),
or (2) a condition and a program point.

In our running example, we could produce the slice shown in Figure 19 from the
slicing criterion 〈{({lines}, 16), (lines = 1, 16)}〉.

As a program comprehension tool, backward conditioning slicing can be used to
check that some situations are not possible in our program. For instance, the backward
conditioning slice of Figure 1(a) with respect to the backward conditioning slicing
criterion 〈{({lines}, 18), (lines = 0, 18)}〉 would be empty, denoting that it is not possible
to reach the state in which (lines = 0,18).

Question answered. What statements can influence these variables at this statement
when these conditions at these (other) statements are satisfied?

Main applications. Program specialization and program comprehension.

2.21. Pre/Postconditioned Slicing [Harman et al. 2001]

Pre/postconditioned slicing [Harman et al. 2001] is a generalized form of conditioned
slicing which combines forward and backward conditioning; therefore, it simultane-
ously uses both the forward conditions (called preconditions) of forward conditioning
slicing and the backward conditions (called postconditions when negated) of backward
conditioning slicing. In pre/postconditioned slicing, slices are constructed by removing
all the statements except those which are in the execution paths determined by the
precondition and which can lead to the satisfaction of the negation of the postcondition.
The reason for negating the postcondition is the verification that the program always
satisfies it. For instance, if we want to check that a program executed in an initial
state satisfying precondition C1 always ends in a final state satisfying postcondition
C2, we would produce a slice with respect to the forward condition C1 and the backward
condition ¬C2. Then, the slice should be empty. If it is not, the statements in the slice
are those which could lead to the violation of the postcondition.

From the previous discussion, it is easy to deduce that a pre/postconditioned slicing
criterion can use forward and backward conditions at the same time; moreover, these
conditions can be more than two if we allow conditions to be inserted at arbitrary
program points. Therefore, to distinguish between forward and backward conditions, a
special arrow notation is used [Fox et al. 2001], where ↓ �c
 denotes a forward condition
c, and ↑ �c
 denotes a backward condition c.

A pre/postconditioned slicing criterion is equal to a backward conditioning slicing
criterion except that each condition pair in the criterion is augmented with the arrow
notation. In our running example we could use the criterion {({lines}, 16), (↓ �‘\n’∈
text
, 1), (↑ �lines <= 1
, 18)} which would produce the empty slice to denote that
whenever variable text contains a ‘\n’ in the initial state, variable lines must be greater
than 1 in the final state.

Question answered. For those executions whose inputs satisfy this condition, what
statements can influence these variables at this statement when these other conditions
at these (other) statements are satisfied?

Main applications. Program comprehension, reuse, and verification.
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read(text);(1)

getChar(text);=c(6)

‘\eof’)!=(cwhile(7)

‘\n’)==(cif(8)

1;+lines=linesthen(9)

Fig. 20. Path slice of the program in Figure 1(a) with respect to 〈9, {1, 2, 3, 4, 5, 6, 7, 8, 9}〉.

2.22. Path Slicing [Jhala and Majumdar 2005]

Path slicing [Jhala and Majumdar 2005] is a program slicing-based technique that
tries to answer the following questions.

(1) Given an execution path, which statements can possibly influence reachability of a
given statement s?

(2) Why is this path never executed?
(3) Why doesn’t my program ever execute statement s in this path?

From these questions, it is easy to realize that path slicing is computed with respect
to a path in the CFG. It should be clear that a path in the CFG corresponds to a set
of possible infinite inputs. Therefore, path slicing is different from static slicing where
all possible executions are considered, and it is different from dynamic slicing where
only one execution is considered. Moreover, path slicing is different from quasi-static
slicing, simultaneous dynamic slicing, hybrid slicing, and pre/postconditioned slicing,
because all of them consider feasible computations. In contrast, path slicing can handle
infeasible computations.

A path slicing criterion is a pair 〈s, p〉, where s is the statement of interest, and
p = {s1, . . . , sn} is a sequence of statements defining a possibly infeasible subpath in
the CFG of the program. The path slice is then computed by removing from p those
statements that cannot influence the reachability of s.

For instance, a path slice of the program in Figure 1(a) with respect to the path
slicing criterion 〈9, {1, 2, 3, 4, 5, 6, 7, 8, 9}〉 is shown in Figure 20.

Statements (7) and (8) are needed to execute (9) (due to control dependence). State-
ment (6) is needed to execute (7), and (1) to execute (6) (due to data dependence).

The definition of a path slice is the following Jhala and Majumdar [2005]: A slice
of a path π is a subsequence of the edges of π such that (1) (complete) whenever
the sequence of operations labeling the subsequence is feasible, the target location is
reachable modulo termination, and (2) (sound) whenever the sequence of operations
labeling the subsequence is infeasible, the path is infeasible.

This means that one limitation of path slicing is that it avoids the difficult ques-
tion of statically reasoning about termination. Therefore, researchers that work with
nonterminating programs should take into account that the feasibility of a path slice
guarantees that either the target location is reachable or that all states that can execute
the path slice cause the program to enter an infinite loop.

The interesting part of path slicing is that it can slice infeasible paths and thus
reason about questions like why a path is never executed? For instance, consider the
program in Figure 21(a) where the statements of function bigFunction are skipped for
simplicity.

In this program, statement (7) is never executed because if x > 0 holds in statement
(2), then variable y is set to 1; hence, y cannot be 0 at statement (6). Therefore, the path
{1, 2, 3, 4, bigFunction, 5, 6, 7} is infeasible. However, path slicing allows us to produce
a slice with respect to this path. This can be useful in debugging to reason why this
path is infeasible when it should be. It also allows us to reason about why statement
(7) is not executed in this path. As an example, Figure 21(b) shows the path slice of the
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read(x);(1)read(x);(1)

(x>0)if(2)(x>0)if(2)

y=1;(3)y=1;(3)

bigFunction(y);=z(4)

(x>0)if(5)(x>0)if(5)

(y=0)if(6)(y=0)if(6)

write("ERROR")(7)write("ERROR")(7)

slice.Path(b)program.Example(a)

Fig. 21. Example program (a) and its path slice (b) with respect to 〈7, {1, 2, 3, 4, 5, 6, 7}〉.

program in Figure 21(a) with respect to the criterion 〈7, {1, 2, 3, 4, 5, 6, 7}〉. This slice
shows that the code in function bigFunction can not influence execution of statement
(7).

In our running example, the path slicing criterion 〈16, {1, 2, 3, 4, 5, 6, 7, 16, 17, 18}〉
yields the empty slice, because none of the previous statements can avoid the execution
of statement (16).

Question answered. Given this execution path, which statements can possibly influ-
ence reachability of this statement?

Main applications. Debugging and testing.

2.23. Abstract Slicing [Hong et al. 2005]

Static slicing is able to determine for each statement in a program whether it affects
or is affected by the slicing criterion; however, it is not able to determine under which
variable values the statements affect or are affected by the slicing criterion. This
problem is overcome by abstract slicing [Hong et al. 2005].

Essentially, abstract slicing extends static slicing with predicates and constraints
that are processed with an abstract interpretation and model checking-based tech-
nique. Given a predicate of the program, every statement is labeled with the value of
this predicate that makes the statement affect (or be affected by) the slicing criterion.
Similarly, given a constraint on some variables of the program, every statement is
labeled indicating if they can or cannot satisfy the constraint. Clearly, static slicing
is a particular instance of abstract slicing, where neither predicates nor constraints
are used. Moreover, in a way similar to conditioned slicing, abstract slicing is able to
produce slices with respect to a set of executions by restricting the allowed inputs of
the program using constraints.

In abstract slicing, a slicing criterion has the form 〈s, P, C〉, where s is a state-
ment of the program, and P and C are, respectively, a predicate and a constraint for
some statements defined over some variables of the program. For instance, C could be
((1), y > x), meaning that at statement (1), the condition y > x holds. Based on previous
slicing techniques, Hong et al. adapted this technique to forward/backward slicing and
chopping, giving rise to abstract forward/backward slicing and abstract chopping.

As an example, consider the program in Figure 22(a); the abstract slice of this pro-
gram with respect to the slicing criterion 〈(6), y > x, T rue〉 is depicted in Figure 22(b).
Here, we are interested in knowing the condition under each statement that affects the
slicing criterion; we do not impose any condition. In the slice, we see that the statement
labeled with ‘[true]’ will always affect the slicing criterion; ‘max = x’ will only affect the
slicing criterion if y ≤ x; and the ‘if-then’ statements will affect the slicing criterion if
y > x.

In our running example, we can produce a slice with respect to the slicing criterion
〈16, c =‘\n’, [(1), text = “hello world!\eof ”]〉. This criterion uses the same dynamic input
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[true]read(x);(1)read(x);(1)

[true]read(y);(2)read(y);(2)

[not(y>x)]x;=max(3)x;=max(3)

[y>x]x)>(yif(4)x)>(yif(4)

[y>x]y;=maxthen(5)y;=maxthen(5)

[true]write(max);(6)write(max);(6)

slice.Abstract(b)program.Example(a)

Fig. 22. Abstract slicing: (b) is an abstract slice of (a) with respect to 〈(6), y > x, T rue〉.

[false]read(text);(1)

[false]read(n);(2)

[c!=‘\n’]1;=lines(3)

[false]1;=chars(4)

[false]"";=subtext(5)

[false]getChar(text);=c(6)

[false]‘\eof’)!=(cwhile(7)

[false]‘\n’)==(cif(8)

[false]1;+lines=linesthen(9)

[false]1;+chars=chars(10)

[false]1;+chars=charselse(11)

[false]0)!=(nif(12)

[false]c;++subtext=subtextthen(13)

[false]1;-n=n(14)

[false]getChar(text);=c(15)

[c!=‘\n’]write(lines);(16)

[false]write(chars);(17)

[false]write(subtext);(18)

Fig. 23. Abstract slice of Figure 1(a) with respect to 〈16, c =‘\n’, [(1), text = “hello world!\eof ”]〉.

as in previous criteria, thanks to the constraint used. Therefore, with this input, the
slice produced would be similar to the one shown in Figure 4 (a dynamic slice). This
can be seen in Figure 23 by looking at the conditions on the right. All the statements
labeled with false cannot affect statement (16). Moreover, the abstract slice provides
additional information: it says, for each statement in the slice, whether the condition
c =‘\n’ will be satisfied or not.

Question answered. Under which variable values do the program’s statements affect
or are affected by the slicing criterion?

Main applications. Program comprehension.

2.24. Amorphous Slicing [Harman and Danicic 1997]

All approaches to slicing discussed so far have been based on two assumptions: the
slice preserves (part of) the semantics of the program, and it is syntax preserving, that
is, the slice is a subset of the original program statements. In contrast, amorphous
slices [Harman and Danicic 1997] preserve the semantics restriction, but they drop
the syntactic restriction: amorphous slices are constructed using some program trans-
formation which simplifies the program and preserves the semantics of the program
with respect to the slicing criterion. In the literature (see, e.g., [Ward 2002, 2003; Ward
and Zedan 2007], when a slicing technique is restricted to statement deletion, it is also
referred to as syntactic slicing as opposed to semantic slicing, where only the semantic
restriction must be preserved.
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mainprogram(1)mainprogram(1)mainprogram(1)

1;+chars=chars(2)sum(chars,1);=chars(2)sum(chars,1);=chars(2)

end(3)end(3)end(3)

increment(a)procedure(4)

sum(a,1);(5)

return(6)

sum(a,b)procedure(7)sum(a,b)procedure(7)

b;+a=a(8)b;+a=a(8)

return(9)return(9)

3Program2Program1Program

Fig. 24. Example of amorphous slicing.

The syntactic freedom allows amorphous slicing to perform greater simplifications,
thus often being considerably smaller than conventional program slicing. These sim-
plifications are very convenient in the context of program comprehension where the
user needs to simplify the program as much as possible in order to understand a part
of the semantics of the program having syntax at less importance.

For instance, consider Program 1 in Figure 24 together with the slicing criterion
〈3, {chars}〉. An intraprocedural static slice of this program would contain the whole
program (Program 1). In contrast, an interprocedural static slice would remove state-
ments (4), (5), and (6) (Program 2). Finally, its amorphous slice would be Program 3. It
should be clear that the three programs preserve the same semantics, but Program 3
has been further simplified by partially evaluating [Jones 1996] some expressions (thus
changing the syntax) of Program 1. Clearly, Program 3 is much more understandable
than Program 1 and Program 2.

It is known [Harman and Danicic 1997] that amorphous static slicing subsumes
traditional static slicing, that is, there will always be an amorphous static slice which
is at least as thin as the static slice constructed for the same slicing criterion. In
addition, there will usually be an amorphous slice which is thinner than the associated
static slice. This leads to the search for the minimal amorphous slice. However, as
proved by Harman and Danicic [1997], the computation of the minimal amorphous
static slice of an arbitrary program is, in general, undecidable.

Amorphous slicing generalizes static slicing with respect to the syntax preserving
dimension. While static slicing is restricted to one syntax (that of the original pro-
gram), amorphous slicing can produce slices with different syntax modifications. This
new dimension can be combined with other techniques besides static slicing. For in-
stance, conditioned amorphous slicing introduces the non-syntax preserving feature of
amorphous slicing into the conditioned slicing technique (see Section 2.19). To continue
with our running example, Figure 25 shows a conditioned amorphous slice of the pro-
gram in Figure 9 with respect to the slicing criterion 〈(text), (text = “hello\nworld!\n
\eof ”), 13, {lines}〉.

Question answered. Can this program be changed to only compute these variables at
this statement?

Main applications. Program comprehension.

2.25. Decomposition Slicing [Gallagher and Lyle 1991]

Decomposition slicing [Gallagher and Lyle 1991] was introduced in the context of
software maintenance to capture all computation on a given variable. The objective of
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mainprogram(1)

read(text);(2)

1;=lines(3)

getChar(text);=c(5)

‘\eof’)!=(cwhile(6)

‘\n’)==(cif(7)

+1;lines=linesthen(8)

getChar(text);=c(10)

write(lines);(11)

Fig. 25. Conditioned amorphous slice of the program in Figure 9 with respect to the slicing criterion
〈(text), (text = “hello\nworld!\n \eof ”), 13, {lines}〉.

this technique is to extract those program statements which are needed to compute the
values of a given variable. Therefore, a decomposition slicing criterion is composed of
a single variable v. The slice is then built from the union of the static backward slices
constructed for the criteria {〈n1, v〉, . . . , 〈nm, v〉, 〈end, v〉} where {n1, . . . , nm} is the set of
lines in which v is output and end is the end of the program. It should be clear that
decomposition slicing is an instance of simultaneous slicing, where the set of slicing
criteria is derived from the variable and the program.

A decomposition slice of the program in Example 1(a) with respect to the slicing
criterion 〈lines〉 is shown in Figure 1(b).

Question answered. What statements of the program can affect this variable?

Main applications. Software maintenance, testing, and program comprehension.

2.26. Concurrent Slicing [Cheng 1993]

Since Cheng [1993] defined the first approach, there have been many works [Krinke
1998; Nanda and Ramesh 2000; Müller-Olm and Seidl 2001; Krinke 2003b; Giffhorn
and Hammer 2007] that face the complexity introduced by concurrent programs in
program slicing.

Concurrent programs cannot be represented with standard graph representations
such as the PDG or the SDG, because they allow that some parts of the program are exe-
cuted in parallel. These pieces of code that can be executed in parallel are called threads.

In order to represent threads, the CFG and the PDG are extended with special
nodes that represent the parallel execution of threads. These extensions are called,
respectively, threaded CFG (tCFG) and threaded PDG (tPDG).

Threads introduce an additional complexity to program slicing when they can be
synchronized or can communicate (e.g., through the use of variables), because they
introduce a new kind of dependence (called interference) between statements.

A statement s1 is interference dependent on a statement s2 if the following holds.

—s2 defines a variable which is used in s1 and
—s1 and s2 may be potentially executed in parallel.

The main problem of interference is that it is not transitive, as control and data
dependence are. Therefore, slicing algorithms for concurrent programs (see, e.g.,
[Nanda and Ramesh 2000; Krinke 2003b]) must provide a special treatment for in-
terference. An evaluation of slicing algorithms for concurrent programs is presented in
Giffhorn and Hammer [2007].

Question answered. What program statements can influence these variables at this
statement in this concurrent program?

Main applications. Debugging and program comprehension.
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mainprogram(1)mainprogram(1)mainprogram(1)

read(x);(2)read(x);(2)

0;=y(3)0;=y(3)

1;=z(4)

5)>(xif(5)5)>(xif(5)

&y;=pthen(6)&y;=pthen(6)

&z;=pelse(7)&z;=pelse(7)

1;+*p=*p(8)1;+*p=*p(8)1;+*p=*p(8)

3Program2Program1Program

Fig. 26. Example program with a pointer p and its incremental slices with respect to the slicing criteria
〈8, y, def use〉 (program 2) and 〈8, y, pos use〉 (program 3).

2.27. Incremental Slicing [Orso et al. 2001a, 2001b]

Incremental slicing [Orso et al. 2001b] is based on the idea that not all data dependen-
cies are equal. In particular, Orso et al. [2001a] distinguish between 24 different types
of data dependencies. Their classification is based on the different levels of complexity
that can be introduced by pointers in a program. For instance, consider Program 1 in
Figure 26.

Here, variable x is only defined at statement (2), and it is used for the first time
at statement (5). Therefore, x at statement (5) data depends on x at statement (2).
Note that in all executions, the value of x at statement (5) will be the same as the
value of x at statement (2). In contrast, the definition in statement (8) can modify
either y or z depending on how the predicate in statement (5) evaluates. Hence, these
definitions can be classified differently: the definition of y (or z) at statement (8) is a
possible definition whereas the definition of x at statement (2) is a definite definition.
Similarly, uses also can be classified as possible or definite. The combination of these
types of definitions, uses, and possible paths where they could appear, gives rise to 24
different types of data dependencies.

The objective of this technique is to allow the user to focus on a particular type of
data dependence. This can be useful, for example, for program comprehension, where
the user can initially ignore weak data dependencies and concentrate on strong data
dependencies. Then, weaker data dependences in the slice can be incrementally incor-
porated. This approach allows us to produce smaller and, thus, easier to understand
slices. Alternatively, incremental slicing can be used in debugging by using the op-
posite strategy. The programmer can produce slices by only considering weak data
dependences which are less obvious and, thus, more likely to be buggy.

An incremental slicing criterion is a triple 〈s, v, t〉, which specifies a statement s, a
set of variables v, and a set of types of data dependences t. Hence, an incremental slice
contains those statements that may affect, or may be affected by, the values of the
variables in v at s through transitive control or specified types of data dependencies.

As an example, the slice of Program 1 in Figure 26 with respect to the slicing cri-
terion 〈8, y, all〉, where all stands for all types of data dependencies, is the whole
Program 1. The slice of Program 1 with respect to the slicing criterion 〈8, y, def use〉,
where def use stands for all types of data dependencies with a definite use of the vari-
able involved, is Program 2. Finally, the slice of Program 1 with respect to the slicing
criterion 〈8, y, pos use〉, where pos use stands for all types of data dependencies with a
possible use of the variable involved, is Program 3.

Because there are no pointers in the program in Example 1(a), only definite defini-
tions and uses exist. An incremental slice of this program with respect to the slicing
criterion 〈16, lines, def use〉 is shown in Figure 1(b).
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A();new=x(1)

B();new=y(2)B();new=y(2)

x;=z(3)

x;=w(4)

y;=w.f(5)y;=w.f(5)

w)==(zif(6)

z.f;=vthen(7)z.f;=vthen(7)

1ProgramofPDG2Program1Program

Fig. 27. Example of a thin slice.

Clearly, incremental slicing generalizes static slicing by only using a subset of data
dependencies to compute the slice. The same idea has been later used in thin slicing
[Sridharan et al. 2007]. Thin slicing distinguishes between three types of dependences.

(1) Control dependencies.
(2) Base pointer flow dependencies. (A base pointer flow dependence is a flow depen-

dence due solely to the use of a pointer in a field dereference).
(3) Producer flow dependencies (i.e., those flow dependencies which are not base pointer

flow dependencies).

A thin slice is computed by ignoring control and base pointer flow dependencies; thus,
a thin slice only includes those statements related by a producer flow dependence. These
statements are called producer statements. Informally, statement s is a producer for
statement t if s is part of a chain of assignments that computes and copies a value to t.

As an example, consider the Java code in Figure 27.
In the PDG, thick arrows represent producer flow dependencies, dotted arrows rep-

resent base pointer flow dependencies, and dashed arrows represent control dependen-
cies. Therefore, following producer flow dependencies, we see that Program 2 is a thin
slice of Program 1 with respect to 〈7, v〉. Observe that the static slice with respect to
the same criterion is the entire Program 1.

In our running example, a thin slice of the program in Example 1(a) with respect to
the slicing criterion 〈16, lines〉 is shown in Figure 5.

Question answered. What program statements can influence these variables at this
statement if we only consider these particular types of data dependence?

Main applications. Debugging and program comprehension.

2.28. Proposition-Based Slicing [Dwyer and Hatcliff 1999]

Proposition-based slicing [Dwyer and Hatcliff 1999] was defined to reduce the finite-
state transition system used in verification techniques such as model checking. Because
properties verification is often a very costly task, this reduction allows the user to cope
with bigger and more complex programs.

In proposition-based slicing, the final objective is to perform model checking with
respect to a linear temporal logic (LTL) formula. Therefore, the user specifies a formula,
and the slicing criterion must be derived from the formula. In particular, given a LTL
formula, the slicing criterion produced is a simultaneous static slicing criterion because
it contains a set of slicing points.

For instance, given a LTL formula ψ = �(16) ⇒ lines > 0 (whenever statement (16)
is executed, variable lines is greater than 0), the following slicing criterion is produced:
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〈{(7, lines), (16, lines), (17, lines), (3, lines), (9, lines)}〉. This slicing criterion includes a
pair (s, v), where v is the set of variables in ψ in the following cases.

—For each statement appearing in ψ (in the example, statement (16)).
—For each predecessor of the statements appearing in ψ (in the example, statement

(7), see the CFG in Figure 2).
—For each successor of the statements appearing in ψ (in the example, statement (17)).
—For each statement which assigns a value to the variables in ψ (in the example,

statements (3) and (9)).

The main peculiarity of proposition-based slicing is that, in contrast to previous
techniques, slices produced contain statements that do not contribute to the final value
of the variables in the slicing criterion. In particular, all the statements appearing in
the slicing criterion are included in the slice, indeed, if they cannot affect the specified
variables.

As an example, the proposition-based slice of the program in Example 1(a) with
respect to the previous slicing criterion 〈{(7, lines), (16, lines), (17, lines), (3, lines),
(9, lines)}〉 is shown in Figure 1(b). This slicing criterion generated from ψ ensures
that the slice produced satisfies ψ . A justification can be found in Dwyer and Hatcliff
[1999].

Question answered. What subset of program statements is needed to satisfy a given
LTL formula?

Main applications. Model checking.

2.29. Database Slicing [Sivagurunathan et al. 1997]

The term database slicing can be used in two contexts. First, it can be used to refer to
a slicing technique that correctly accounts for database operations. Second, it can be
used to refer to the slicing of databases.

Sivagurunathan et al. [1997] noted that standard algorithms produce incorrect slices
in the presence of I/O and database operations. The reason being that program slicers
only consider the program state and do not take into account the external (or contextual)
state (i.e., the state of the external interacting components such as files, databases, user
inputs, etc.).

This can be shown with a simple example.

(1) read(x) (1) read(x)
(2) read(y) (2) read(y) (2) read(y)
(3) z = y +1 (3) z = y +1 (3) z = y +1

Program P P’=Incorrect slice of P P’’=Correct slice of P

If we assume that the command read() reads a value from the input file, and the
initial state of the file is “42 5”, then the value of z at line (3) when executing P is 6,
whereas it is 43 when executing P’.

Clearly, the command read() has an effect on the external state which slicing
algorithms should take into account. This problem is common when handling database
operations.

The solution proposed by Sivagurunathan et al. was to use special (artificial) vari-
ables in the program associated to I/O operations that make the external state acces-
sible to the slicer. The main problem of this solution is that it is necessary to use a
transformation schema that maps the original program language to a new language
that includes the special variables. Tan and Ling [1998] proposed a similar solution for
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database operations. Their approach assumes the existence of implicit variables which
are updated with each database operation.

Later, Willmor et al. [2004] proposed an alternative solution which is based on two
new types of data dependencies which must be computed and added to the PDG—the
resultant PDG is known as database-oriented program dependence graph (DOPDG).
The new dependencies are program-database dependencies which relate non-database
statements with database statements, and database-database dependencies that cap-
ture the situation when execution of one database statement affects the behavior of
some other database statement that is executed after it.

As an example, the database slice of the program in Example 1(a) with respect to the
slicing criterion 〈16, lines〉 is shown in Figure 1(b).

Database slicing also refers to the slicing of databases. Cheney [2007] applied pro-
gram slicing ideas to databases in order to determine what parts of a database may
influence the result of a query.

Question answered. What program statements can influence these variables at this
statement, taking into account that the program has I/O operations?

Main applications. Program comprehension, debugging, algorithmic debugging, dead
code removal, program segmentation, program analysis, software quality assurance,
program differencing, software maintenance, testing, program parallelization, module
cohesion analysis, partial evaluation, and program integration.

3. DISCUSSION

This section compares all the slicing techniques presented from different points of
view. First, the slicing criteria are thoroughly compared by examining their differences
for every slicing criterion’s dimensions. And second, the techniques are classified with
respect to a set of slicing relations, which allows us to produce a hierarchy of slicing
techniques.

3.1. A Classification of Slicing Techniques

In this section, we use a classification by Harman et al. [1996] in order to compare and
classify all slicing techniques presented so far.

For concreteness, we first need to formally define the notion of precision when we talk
about precise slices. In general, it is accepted that a slice S produced for a program P
with respect to a slicing criterion C—for simplicity, we assume here a backward static
slicing criterion—is precise if and only if S contains all and only the statements in P
which can affect C.

However, it is known [Weiser 1984] that this notion of precision is, in general, unde-
cidable. Therefore, we will use a more relaxed (though decidable) notion of precision.

Given a program P, we consider that a backward static slice S produced for P with
respect to the criterion 〈s, v〉 is precise if and only if ∀ n, n ∈ S . n →∗ s. Where s1 → s2
means that s2 control or data depends on s1, and →∗ is the reflexive and transitive
closure of →. For those techniques that use the PDG, this condition is equivalent to
saying that there exists a path from n to s in the PDG.

It should be clear that, according to this notion of precision, a precise slice can
include statements which cannot influence the slicing criterion. For instance, consider
the following program.

(1) x = 42;
(2) y = 1 + x;
(3) y = y - x;
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Table I. Classification of Program Slicing Techniques

Slicing Vars Initial Slice Sta. Iter. Pa. Dir. Pr. Lim. Sy/Se. Dep. Sta.
Technique States Points Con. Cou. Aw. Pres. Con. Cons.
Static P(I) {S} single no {N } no B yes no y/y(e) {D} {T }
KL Dynamic P(I) single single no single yes B yes no y/y(e) {D} {T }
AH Dynamic P(I) single single no single no B yes no y/y(e) {D} {T }
Forward P(I) {S} single no {N } no F yes no y/y {D} {T }
Quasi-Static P(I) P(S)� single no {N } no B yes no y/y(e) {D} {T }
Conditioned P(I) P(S)�� single 1 ↓ {N } no B yes no y/y(e) {D} {T }
Backward Cond. P(I) P(S)�� single n ↑ {N } no B yes no y/y(e) {D} {T }
Pre/Post Cond. P(I) P(S)�� single n � {N } no B yes no y/y(e) {D} {T }
Path ∅ P(S)� � �� single no {N } no B yes no y/y(e) {D} {T }
Decomposition P(I) {S} n derived no {N } no B yes no y/y {D} {T }
Chopping P(I) {S} n+n’ no {N } no B∧ F yes no y/n {D} {T }
Relevant P(I) single single no single no B no no y/y {D} {T }
Hybrid P(I) P(S)� � � 1+n no {N } no B yes no y/y(e) {D} {T }
Intraprocedural P(I) {S} single no {N } no B no no y/y(e) {D} {T }
Interprocedural P(I) {S} single no {N } no B yes no y/y(e) {D} {T }
Simultaneous P(I) {S} n no {N } no B∨ F yes no y/y(e) {D} {T }
Simul. Dyn. P(I) n single no {N } no B yes no y/y(e) {D} {T }
Interface P(I) {S} n no {N } no B no no y/y(e) {D} {T }
Stop-List P(I) {S} single no {N } no B yes vars y/n {D} {T }
Barrier P(I) {S} single no {N } no B yes stats y/n {D} {T }
Dicing P(I) {S} n no {N } no B yes no y/n {D} {T }
Abstract P(I) P(S)�� single n � {N } no B yes no y/y(e) {D} {T }
Amorphous P(I) {S} single no {N } no B yes no n/y(e) {D} {T }
Incremental P(I) {S} single no {N } no B yes no y/y P(D) {T }
Proposition P(I) {S} n derived no {N } no B yes no y/y {D} {T }+
New
Techniques
Statement ∅ {S} single no {N } no B no no y/y(e) {D} {T }
Point ∅ {S} single no {N } no B no no y/y(e) {D} {T }
Conditioned ∅ P(S)�� single n � {N } no B no no y/y(e) {D} {T }
Cond. Chopping P(I) P(S)�� pair n � {N } no B∧ F yes no y/n {D} {T }
Dyn. Chopping P(I) P(S)�� pair n � {N } no B∧ F yes no y/n {D} {T }
Barrier Dicing P(I) {S} n no {N } no B yes stats y/n {D} {T }
Filtered P(I) {S} single no {N } no B yes no y/n {D} P(T )
Augmented P(I) {S} single no {N } no B yes no y/n {D} {T }±
Forw. Amorph. P(I) {S} single no {N } no F yes no n/y(e) {D} {T }
Forward Point ∅ {S} single no {N } no F no no y/y(e) {D} {T }

� all agree on input prefix �� all agree on conditions � � � all agree on breakpoints � � �� all agree on path

Here, statement (1) cannot influence the value of y at statement (3); however, state-
ment (1) would be included by almost all slicing techniques computed with respect to
〈3, y〉, because statement (1) influences statement (2), which in turn influences state-
ment (3).

Table I extends Harman et al.’s [1996] classification with new dimensions in order to
be able to classify new techniques. In the table, we have omitted those slicing criteria
which have been identified as particular cases of another technique in Section 2 and,
thus, do not impose additional restrictions or dimensions in the table. For instance, we
omit end slicing in the table because it is a particular case of simultaneous slicing; we
also omit call-mark slicing and dependence-cache slicing because they are versions of
dynamic slicing where the dynamic data is handled differently. In addition, we only
include the most general form of slicing for each technique. For instance, in the case
of quasi-static slicing, the original definition by Venkatesh [1991] considered slicing
only “at the end of the program,” here, in contrast, we consider a generalization (see
Section 2.11) in which any point of the program can be selected for slicing.
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In the table, following Harman et al.’s terminology, the sets I, S, N , D, and T
refer, respectively, to the set of all program variables, possible initial states, possible
iterations, program statements, and types of dependencies.

—Column Variables (vars) specifies the number of variables participating in a slicing
criterion C, where P(I) indicates that a subset of I participates in C.

—Column Initial States shows the number of initial states considered by the corre-
sponding slicing criterion.

—Column Slice Points describes the number of program points included in C, and hence,
the number of slices actually produced (and combined) to extract the final slice. Here,
“n derived” means that n different points are implicitly specified (see Section 2.25);
“1+n” means that 1 program point is specified together with n breakpoints, and “n+n’”
means that n points are specified for the source, and n′ points are specified for the
sink,

—Column Statements Conditions (sta. Con.) specifies if the statements in the slice
must fulfill any condition. Here, we use a number to describe how many conditions
can be specified, and we use an arrow to describe the direction of the condition: ↓
indicates that the conditions affects the statements after the condition, ↑ indicates
that the conditions affects the statements before the condition, and � indicates that
the conditions can be specified for both directions.

—Column Iteration Counts (Iter. Cou.) is related to the fact that the slicing point can
be executed several times (e.g., if it is inside a loop or a procedure), thus producing
several values for its variables. Hence, iteration counts indicates, for the specified
slice points, which iterations are of interest.

—Column Path Aware (Pa. Aw.) indicates if the slice produced is path aware,
as in Korel and Laski’s style of slicing [1988] (see Section 2.3), or it is path
unaware.

—Column Direction (Dir.) states the direction of the traversal to produce the slice which
can be backwards (B), forwards (F), or a combination of both. Here, despite that some
techniques accept both directions, we assign to every technique the direction specified
in its original definition (see Section 2).

—Column Precision (Pr.) is marked if the slice produced is precise.
—Column Limits (Lim.) specifies if the computation of the slice is limited or not. Here,

“vars” specifies that a list of variables is used as the limit; and “stats” specifies that
a list of statements is used as the limit.

—Column Syntax/Semantics Preserving (Sy/Se. Pres.) contains boolean values that
indicate, respectively, whether the slice produced is a projection of the program
syntax or it preserves a projection of the original semantics. Here, “(e)” means that
the slice produced is executable.

—Column Dependences Considered (Dep. Con.) specifies how many types of depen-
dences are considered to compute the slice.

—Column Statements Considered (Sta. Cons.) specifies what statements could be part
of the slice. Here, “+” indicates that a subset of statements are included in the slice
even if they do not contribute to the slicing criterion; whereas “−” indicates that a sub-
set of statements are not included in the slice even if they do contribute to the slicing
criterion.

For precision in the slicing criteria comparison, we have included in the table two
versions of dynamic slicing. The first one is the original definition by Korel and Laski
[1988] which is path-aware; the second one is the path-unaware definition introduced
by Agrawal and Horgan [1990]. We put attention on Agrawal and Horgan’s defini-
tion because it is more widely used in the program slicing community, and thus, it is
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Table II. Binkley et al.’s Slicing Techniques Produced by Permutation of Slicing
Dimensions

Slicing Initial Iteration Path
Technique States Count Aware
Static Slicing (SS) {S} no no
Dynamic Slicing (DS) single no no
Static Iteration Count Slicing (SIS) {S} yes no
Dynamic Iteration Count Slicing (DIS) single yes no
Static Path-Aware Slicing (SPS) {S} no yes
Dynamic Path-Aware Slicing (DPS) single no yes
Static Iteration Count Path-Aware Slicing (SIPS) {S} yes yes
Dynamic Iteration Count Path-Aware Slicing (DIPS) single yes yes

comparable to most slicing techniques. In the case of simultaneous slicing, for concrete-
ness, we have assumed that the criteria combined are static slicing criteria.

Each dimension in the table introduces a way to do slicing which, in general, can
be adapted to all the techniques. Consider for instance the Direction dimension. Each
technique has been assigned a value for this dimension (i.e., the value that the author
used when the technique was defined); however, other values can be used giving rise
to different forms of slicing. For instance, we can think of backward static slicing
and forward static slicing; backward barrier slicing and forward barrier slicing, etc.
Similarly, the technique amorphous slicing introduced a new dimension (i.e., a new way
to do slicing), and thus, it could be applied to all the slicing techniques (e.g., amorphous
conditioned slicing vs. non-amorphous conditioned slicing). The way in which the slice
is computed can be different too. For instance, we could think of intraprocedural barrier
slicing and interprocedural barrier slicing. Consequently, each dimension in the table
is a potential source of slicing techniques, and new forms of slicing appear when either
a new value for a dimension is defined or when a new dimension is discovered. In
contrast, a new slicing technique appears in the literature when a new combination
of values for the dimensions is found useful. Note, we are assuming here that the
application of a technique in a different language, paradigm, or context in general is
not a new slicing technique but an adaptation of an existing slicing technique. Under
this assumption, Table I is a mighty tool that can be used to determine the degree of
novelty of new slicing techniques.

The slicing criteria of the table summarize the collection of slicing-based techniques
produced during the last 30 years. As explained in Section 2, all these criteria have been
published, implemented, and applied to different software engineering fields. However,
of course, by combining different values for the dimensions, we could produce several
new slicing techniques. Unfortunately, in general, the techniques produced with this
method would be useless in practice.

Binkley et al. [2006a, 2006b] studied the techniques produced by permuting the
values of three dimensions in the table, namely ‘Initial States’, ‘Iteration Counts’, and
‘Path-Aware’. The result is the eight techniques shown in Table II.

The comparison of slicing techniques presented in Table I is a powerful tool for the
study of current slicing techniques and the prediction of new ones. The last ten rows in
Table I correspond to new slicing techniques predicted by analyzing the information of
the table. These new techniques have been predicted by trying to introduce a facility
of a technique into another technique to increase its power.

The first new technique is statement slicing. This technique answers the question,
which statements can possibly influence reachability of statement s? Surprisingly,
this question cannot be answered by previous slicing techniques. A statement slice is
composed of all the possible path slices of a program with respect to a given statement.
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(1) read(text);

(6) c = getChar(text);

(7) while (c != ‘\eof’)

(8) if (c == ‘\n’)

(9) then lines = lines + 1;

(15) c = getChar(text);

Fig. 28. Statement slice of the program in Figure 1(a) with respect to statement (9).

That is, statement slicing is a generalization of path slicing where all the possible paths
are considered.4

For instance, consider the program in Figure 1(a). We want to know what statements
can possibly influence reachability of statement (18) when the input is finite. The
answer is none (the statement slice would be empty), because this statement will
be executed always. This is rather different from the slice produced by other slicing
techniques which focus on the value of a variable. Here, as in path slicing, the variables
of interest are those which belong to conditions that can influence reachability of the
statement of interest. In this example, computing a path slice is as easy as looking at the
PDG where we see that the control of the program will always arrive to statement (18).
In general, to compute the statement slice, it is necessary to check which statements
can influence the conditions that determine whether the point of interest is going to be
executed or not. For instance, consider now the same program and the statement (9).
In this case, the statement slice produced is shown in Figure 28.

Statements (7) and (8) are needed to execute (9) (due to a control dependency);
statements (6) and (15) are needed to execute (7); and (1) to execute (6) (due to a data
dependency).

Another new technique is point slicing. Point slicing tries to answer the question,
What statements could have been executed before statement s? Again, this question
could not be answered by previous techniques.

As with statement slicing, point slicing considers a single statement in the slicing
criterion. Point slicing selects a statement of the program and computes backwards
(respectively, forwards) all the statements that could have been executed before (re-
spectively, after) it. Apart from its clear application in program comprehension, this
technique can be useful in debugging. For instance, during print debugging [Agrawal
1991], the programmer places print statements in some strategic points of the program
and then executes it in order to see if some of them have been reached and in which
order they have been executed. Usually, a print statement is placed in a part of the
code in order to check if it is executed or not. A point slice with respect to this state-
ment can be useful in order to know which possible paths of the program could reach
the execution of this statement. Note that point slicing does not follow control or data
dependencies, but control flows; thus, it is not subsumed by any of the other slicing
techniques in the table. As an example, the statement print (‘Executed’); does not
influence any other statement, and hence, it will not belong to any slice taken with
respect to a subset of the variables of the program (it will be removed in all the slicing
techniques!). The implementation of this technique is straightforward, because a point
slice can be constructed by traversing the control flow graph from the point of interest.

The conditioned version of point slicing restricts the possible paths by limiting the
initial states of the execution. By using the pre/postconditions of pre/postconditioned
slicing, the programmer would be able to include conditions inside the source code. This
facility would significantly increase the power of the technique, because it would allow

4We could also restrict the number of paths by using a condition. This would lead us to conditioned statement
slicing.
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the programmer to know which paths of the program can be executed before a statement
in a particular context (e.g., can statement s1 be executed before statement s2 if this flag
is activated?). This would significantly reduce the work of a print debugging user by
automatizing much of the work. Of course, the implementation of pre/postconditioned
point slicing is not trivial as point slicing is.

Conditioned chopping is a very general form of slicing which subsumes both condi-
tioned slicing and chopping, and hence, dynamic chopping (neither are defined yet).
Dynamic chopping can be useful, for instance, in debugging. When tracing a computa-
tion, a programmer usually proceeds (big) step by step until a wrong subcomputation is
found (e.g., a procedure call that returned a wrong result). Dynamic chopping comes in
handy at this point because it can compute the statements that influenced the wrong
result from the procedure call. This dynamic chop is, in general, much smaller than
the static chop, because it only considers a particular execution.

It should be clear that the source and the sink of chopping are not conditions but
points. Therefore, conditioned chopping computes all the statements in the program
that, being affected by source, affect sink when some pre/postconditions are satisfied.

Barrier dicing is a new form of dicing in which barriers are used to eliminate from the
slice those parts that the user knows are correct. Once an incorrectly valued variable
has been found and a slice produced for it, the objective of dicing is to reduce this slice
by eliminating the statements appearing in a static slice of variables that appear to be
correctly computed. However, in the slice, there still remain many statements which
the programmer knows are correct (e.g., reused procedures and functions, legacy code,
etc.). The barrier facilities of barrier slicing are useful at this point, because they can
be set at strategic points (e.g, procedure calls) to avoid inclusion in the slice of correct
code; thus increasing the power of dicing.

Filtered slicing generalizes static slicing. While the other techniques collect all state-
ments that influence the slicing criterion, filtered slicing only collects the subset of
statements that influence the slicing criterion and that are of a given type. Clearly,
the idea behind filtered slicing is similar to the one of incremental slicing and thin
slicing. These techniques only consider a type of dependencies, and filtered slicing only
considers a type of statement. A filtered slicing criterion is a triple 〈s, v, c〉, where s and
v keep the standard meaning, and c specifies a condition that statements must fulfill in
order to be part of the slice. This freedom allows the user to produce smaller slices that
only focus on a particular comprehension task. For instance, the filtered slice of the
program in Example 1(a) with respect to the slicing criterion 〈16, lines, s defines vari-
able lines〉 contains statements (3) and (9). This slice shows what assignments to lines
influence the slicing criterion. The filtered slice with respect to 〈16, lines, s contains c〉
contains statements (6), (7), (8), and (15). This slice shows only the contribution of c to
the computation of the slicing criterion. The filtered slice with respect to 〈16, lines, s
is an i f or a while statement〉 contains statements (7) and (8). This slice shows all the
conditions that can be traversed before reaching the slicing criterion.

Augmented slicing generalizes proposition-based slicing by allowing us to exclude
statements from the slice. Moreover, in contrast to proposition-based slicing where the
statements added to the slice are predefined, in augmented slicing, the statements
added are specified by the user. An augmented slicing criterion is a tuple 〈s, v, c, f 〉,
where s and v keep the standard meaning of static slicing, c specifies a condition that
statements must fulfill in order to be part of the slice, and f specifies a condition that
statements must fulfill in order to be excluded from the slice.

Finally, the last two rows of the table—forward amorphous and forward point
slicing—correspond to the forward versions of these techniques which should be inves-
tigated as a program comprehension tool. On the one hand, forward amorphous collects
those statements affected by the slicing criterion but without the syntax preservation
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Fig. 29. Relationships between program slicing techniques.

restriction. This allows us to present to the programmer more compact and under-
standable slices. On the other hand, forward point slicing allows us to answer the
question, What statements could be executed after statement s? Here, again, the use
of pre/postconditions would increase the power of this technique.

3.2. Interrelations Between Slicing Techniques

The information in Table I can also be used to identify relations between slicing tech-
niques. We have identified some relations and represented them in the graph of Fig-
ure 29, considering that each pair of related slicing techniques relate comparable slicing
criteria. There are three kinds of arrows in the graph.

Generalization (S1 −→ S2). A slicing technique S2 generalizes another technique S1
if and only if all the slicing criteria that can be specified with S1 can also be specified
with S2. This relation answers the question, is slicing technique A a particular case of
slicing technique B?

Superset (S1 ��� S2). The slice produced by a slicing technique S2 is a superset of the
slice produced by another technique S1 if and only if all the statements in S1 also belong
to S2. This relation answers the question, is the slice5 produced by slicing technique A
included in the slice produced by slicing technique B?

Composed of (S1 · · ·· � S2). A slicing technique S1 is composed of the technique S2 if
and only if the slicing criterion of S1 contains the slicing criterion of S2. For instance,
chopping is composed of two slicing techniques (forward slicing and backward slicing),

5Recall that we are referring to minimal slices.
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Fig. 30. Generalization relationships between program slicing techniques which develop the initial states
dimension.

dicing is composed of n slicing techniques (usually one backward slice of an incorrect
value, and n − 1 backward slices of a correct value), and simultaneous static slicing is
composed of n slicing techniques. In the graph, for clarity, we use only static slicing
as the component of dicing and simultaneous static slicing. This relation answers the
question, is slicing technique A used by slicing technique B?

The graph in Figure 29 mixes together all the techniques. Each node in the graph
represents a technique of Table I. Therefore, each node has a different parameteri-
zation for the dimensions in Table I, and the reader should not confuse techniques
with particular values of dimensions. For instance, the node “Forward” represents the
technique “Forward Slicing” described in Section 2.5 rather than the value “Forward”
of the “Direction” dimension. Therefore, this graph must be complemented with Table I
in order to know the exact meaning of each arrow. The graph can say that technique A
generalized technique B, but it cannot explain why. For instance, incremental slicing
generalizes static slicing by allowing us to only consider a subset of types of depen-
dences. This information comes from Table I. Note that the graph naturally places
static slicing (Weiser’s technique) as the core of the relations. This also allows us to see
how this technique has evolved in many directions.

If we concentrate on a subset of the dimensions, we can extract useful information.
For instance, if we only focus on the Initial states dimension, we get the graph in
Figure 30. This graph only contains those techniques which have concentrated on
restricting the initial states considered. In the figure, we have included the year when
each technique was published, and thus, we see that this dimension was exploited
during the 90’s.

We can also focus on a set of dimensions and get interesting conclusions, Binkley et al.
[2006a, 2006b] have done with the eight techniques of Table II. They used the superset
relation to relate different permutations of the values of three dimensions, producing
the graph in Figure 31. Since each pair of values taken in the same dimension imply a
less or more restricted slice, their combination produces a lattice.

The classification points out abstract slicing as one of the most general slicing tech-
niques, thanks to its use of predicates and conditions. While chopping generalizes
forward and backward slicing, an abstract chop [Hong et al. 2005] generalizes forward
and backward abstract slicing. Hence, abstract chopping subsumes static, dynamic,
backward, and forward slicing.
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Fig. 31. Superset relationships between the program slicing techniques of Table II.

4. CONCLUSIONS

During the last thirty years, program slicing has been applied to solve a wide vari-
ety of problems. Each application required a different extension, generalization, or
combination of previous slicing techniques. In this work, we have described and com-
pared these techniques in order to classify them according to their properties and in
order to establish a hierarchy of slicing techniques. In particular, we have extended a
comparative table of slicing techniques by Harman et al. [1996] with new dimensions
and techniques. The classification of techniques presented not only shows the differ-
ences between them; it also allows us to predict not yet used future techniques in the
table that will fit a combination of parameters. By combining strong points of different
slicing techniques, we can predict a more powerful technique that can solve problems
not addressed before.

With the information provided in this classification, we have studied and identified
three kinds of relations between the techniques: composition, generalization, and su-
perset relations. This study allows us to reason about the interrelations between slicing
techniques; to observe how (in which order and when) the techniques have been devel-
oped, thus reasoning about the evolution of program slicing; and to answer questions
like, is one technique more general than another technique? Is the slice produced by
one technique included in the slice of another technique? Is one technique composed of
other techniques?
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